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A B S T R A C T

We describe a method for modeling the geometry of random porous materials. The approach enables the
independent selection of crucial parameters, including porosity, pore size distribution, pore shape, and
connectivity. Consequently, it can effectively model a wide range of porous systems. Due to the diverse and
systematic variation possibilities, the method is suitable for developing and optimizing porous structures. The
geometries can be exported as triangular meshes, facilitating their immediate use in numerical simulation and
further digital processing. We showcase the method’s capabilities by minimizing the foam structure’s thermal
conductivity through geometry optimization.
1. Introduction

Porous materials play a role in many scientifically interesting and
technically relevant systems. Depending on the question, porosity can
be considered on different levels of accuracy. For some questions in
the field of geosciences, for example, effective descriptions in terms
of macroscopic laws, such as, e.g., Darcy’s law, are sufficient. Other
highly topical issues related to heat and mass transfer in porous media,
such as catalysis, thermal insulation, and filtering, require understand-
ing at the pore-scale level. In this case, the geometry of the porous
structures must be considered explicitly. The system geometries can
be obtained experimentally by 3d scanning techniques like computed
tomography. However, for the development and optimization of porous
structures using numerical simulation, versatile digital model geome-
tries are needed that, on the one hand, can accurately describe realistic
systems and, on the other hand, can be systematically varied and
parameterized [1,2].

Various methods for generating porous geometries on different
levels of simplification are described in the literature. Monte Carlo
methods, for example, where pores are subtracted from a solid geom-
etry until a desired porosity is reached, have been employed [3,4]. A
sophisticated Monte Carlo approach has been applied by Chen et al. [5],
where the catalyst layer of a fuel cell was replicated with randomly dis-
tributed carbon and platinum particles, along with an ionomer phase,
correctly replicating their respective volume fractions. Other simplifi-
cations include the replacement of pores by simpler geometries such as
interconnected tubes [6], methods, where pores are placed randomly
and grow until desired pore metrics are reached [7], or purely sta-
tistical methods such as multiple-point statistics [8]. Representative
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elementary volumes (REV’s) are frequently employed for large-scale
simulations. Porous geometries of gyroid structures can be obtained
by a method described in [9]. A more sophisticated and more general
representation is required for other problems, such as the reactive flow
on chemically active surfaces of a porous catalyst. An example is given
in [10], where the pore space of a catalyst is represented by repeated
unit cells. Dyck and Straatman [11] obtain porous geometries from
random close packings of spheres, which, in turn, have been obtained
from DEM simulations. Recent reviews on numerical models of porous
media can be found in [2,12–14].

The models available in the literature are generally tailored to spe-
cific applications, which they then describe in good quality. However,
none of the existing methods meet the criteria relevant to the numerical
optimization of porous structures, i.e., they are versatile, realistic, and
can be systematically varied by parameters. The method presented in
this paper is intended to fill this gap. To that, we extend the approach
by Dyck and Straatmann [11] to aspherical pores with arbitrary over-
laps and post-processing of the individual pores by, e.g., texturing the
pores’ surface.

We showcase our method by (a) replicating a natural porous ma-
terial, simulating its thermal conductivity, and validating it with mea-
sured data and by (b) minimizing the heat conductivity of a fictional
open-porous material with overlapping, non-spherical pores at constant
porosity. Such porous structures appear, for example, in macro-porous
ceramics, which can be produced by directly foaming a ceramic suspen-
sion or by using a precursor with additives that lead to the formation
of pores through pyrolysis during firing.
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Fig. 1. Sphere arrangements and inverse sphere arrangements as models for solid phase and void phase porous materials.
Fig. 2. Positioning of the geometric primitives (here spheres) in space. Left: Initial position of the spheres on a rectangular lattice in a cubic domain. Middle: Position after
equilibration phase. Right: Result of the Lubachevsky–Stillinger compression. The colors indicate the particle ID chosen according to the initial particle position. (For interpretation
of the references to color in this figure legend, the reader is referred to the web version of this article.)
Fig. 3. Modification of the geometric primitives in size (left), shape (middle), and surface texture (right). More drastic modifications of the shape are shown in Fig. 4. The surface
texture (roughness) is achieved by randomly relocating the mesh points perpendicular to the object’s surface. The relocation distances are Gaussian random numbers with mean
5% of the particle’s diameter. A detailed view is shown in Fig. 5.
2. Modified sphere packings as a model for porous geometries

One way to model porous matter is to compose the solid matrix
by placing elementary geometric bodies like spheres in space. This
arrangement can be used directly as a model for a solid-phase porous
material. Furthermore, the union of all bodies, following constructive
solid geometry principles, can be subtracted from an encompassing
solid body to obtain a void phase porous geometry as shown in Fig. 1.
In both cases, the elementary geometric bodies can be modified in
various ways as an intermediate step. Such modifications include scal-
ing, deformation, changing the position and orientation, or adding a
surface texture. Our method for generating models of porous structures,
therefore, decomposes into three main steps:

1. Positioning of the geometric primitives in space: Typically, a large
number of objects need to be distributed here, so automated
methods are usually required. In this work, we restrict ourselves
to spherical objects and choose event-driven DEM (e.g., [15]) for
the automatic random positioning. As shown later, the random
spatial distribution of the pores is a good approximation of
many scientifically interesting or technically relevant systems.
First, we set up a cuboidal simulation domain with periodic
boundary conditions containing the desired number of spheres.
The radii of the spheres are chosen according to the desired pore
size distribution, and the simulation domain size is chosen such
2 
that the filling fraction is significantly below the desired final
packing fraction of the particles. In the first simulation step, we
equilibrate the system by specifying random velocities for the
particles, assuming elastic interactions, and then simulating their
dynamics for a defined period (e.g., 50 collisions per particle).
To simulate these dynamics, we use event-driven DEM. The
idea of DEM (discrete element method) is to integrate Newton’s
equations of motion to obtain the trajectories of a system of
discrete macroscopic bodies. In event-driven DEM, the individ-
ual bodies are modeled as ideal hard. The collision of ideally
rigid bodies is characterized by an instantaneous exchange of
momentum. Therefore, the many-body system dynamics decom-
poses into a sequence of instantaneous binary events in which
the concerned particles change their linear and angular veloc-
ity. In between the collisions, the bodies move along ballistic
trajectories. This allows for the highly efficient simulation of the
dynamics of the many-body system, as there is no need for the
iterative and computationally expensive numerical integration
of Newton’s equation of motion. This simulation technique is
valid for systems where binary collisions can be assumed. From
a fundamental point of view, this is valid for dilute systems,
hard particle materials, and highly dynamic systems. In prac-
tice, however, the method has also been successfully applied to
surprisingly densely packed systems. A detailed description of
event-driven DEM can be found in [16]. Next, we adjust the
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Fig. 4. Generation of non-spherical pores by volume conserving transformations of the initial spheres into objects of more complex shape. The inset shows a magnification of the
cube’s surface.
Fig. 5. Modeling of roughness and surface texture: The geometry description does not distinguish between the geometry of the base body and the surface structure. This means
that the triangular mesh describes the entire boundary of the particles, which separates the particle material from the environment. Describing the shape of a particle with a
highly structured surface can require hundreds to thousands of triangles. The figure shows part of the surface of a sphere. Left: smooth sphere, right: rough sphere. The full surface
consists of 20,480 triangles.
packing fraction by applying the Lubachevsky–Stillinger algo-
rithm. The Lubachevsky–Stillinger algorithm [17] is a compu-
tational method for generating random packings of hard spheres
up to random close packing. The algorithm starts with an initial
configuration of non-overlapping spheres in a specified volume.
Then, the spheres grow at a uniform rate. As the spheres expand,
the algorithm checks for collisions. When two spheres collide,
their velocities are adjusted according to an elastic collision.
To simulate the resulting dynamics, we also apply event-driven
DEM. The algorithm continues until the desired packing density
is achieved. Thereby the growth rate of the particles is chosen
to be sufficiently small to avoid jammed and frustrated particle
arrangements. The Lubachevsky–Stillinger algorithm influences
the particle diameters and, thus, the pore size distribution. How-
ever, this undesirable side effect can be countered after the
algorithm has been completed by re-scaling the entire system
by the inverse factor with which the individual particles were
previously enlarged. Fig. 2 shows this three-stage process.

2. Modification of the geometric primitives (if required): To carry out
various modifications, we represent each geometric primitive
by individual triangular meshes from here on. Fig. 3 exemplary
shows the variation of object size, shape, and surface texture. In
this work, we use the meshing tool pymesh [18] to perform the
mesh modifications.
By scaling the bodies, their overlap can be tuned, which al-
lows modeling of both open- and closed-porous materials and
3 
adjusting the connectivity of the pores. As an undesired side
effect, scaling the objects influences the system’s porosity and
pore size distribution. If all spheres are scaled by the same
factor, the influence on the pore size distribution can be coun-
tered by scaling the entire system with the inverse factor. The
porosity is, however, affected by scaling in a way that cannot
be pre-calculated. Therefore, obtaining the desired porosity is
an inverse optimization problem. It can be solved by varying
the initial packing fraction such that after scaling the porosity
assumes the desired value. In practice, this step can require some
cycles of iteration.
The shape modification is not restricted to the ellipsoids shown
in Fig. 3. Many other shapes are possible by more rigorous
deformations, as displayed in Fig. 4. The transformation into
narrow sticks is of particular practical relevance since this can be
used to obtain porous structures based on fiber networks. With
the technique of deformed spheres, pores of complex shapes can
be generated without the need to simulate the dynamics and the
complicated interaction of the non-spherical objects. Suppose
this approach is insufficient to represent the desired pore shapes.
In that case, it is still possible to return to step 1 and to simulate
the packing of the complicated shaped bodies explicitly.
The description of the geometry does not distinguish between
the base body and the structure of its surface. That is, the entire
boundary of the particles, separating the particle material from
the surroundings, is described by the triangular mesh. Therefore,
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Fig. 6. Exemplary open porous geometries resulting from the described modified sphere packing algorithm.
adding a texture to the base body requires adapting its triangular
mesh. Describing the shape of a particle with a highly structured
surface can require hundreds to thousands of triangles. As an
example, we add surface roughness by randomly relocating the
mesh points perpendicular to the surface of the particles (Fig. 3,
right panel). Fig. 5 illustrates the details of this procedure.

3. Generation of the inverse packing (in case of void phase porous
geometries): The result of the previous step is solid-phase porous
structures. Suppose we subtract the sum of all individual ge-
ometric primitives from a piece of solid material in the sense
of constructive solid geometry. In that case, we arrive at the
complementary void-phase porous structure.

The described procedure makes it possible to create a wide variety of
porous structures. Fig. 6 shows some examples of solid and comple-
mentary void phase porous geometries. Further examples are discussed
later in the application demonstrations in Sections 3 and 4.

3. Application demonstration A: Replication of a ceramic foam
structure

This Section demonstrates the modified sphere packing method
by replicating the ceramic foam structure. To validate the result, we
simulate heat transport through the artificial porous geometry and
compare the resulting heat conductivity to that of natural ceramic foam
obtained from experiments.

To replicate the foam structure using the method described in Sec-
tion 2, the pore size distribution, the porosity, the overlap ratio between
neighboring pores, and the sphericity of the pores are required. We
perform a 𝜇-CT analysis of a 1 cm3 sample of the ceramic foam to
obtain these metrics. Fig. 7 shows microscopy images of the sample
and a 2D slice of the acquired tomogram. As we can see from both
the microscopy data and the CT data, all pores are almost perfectly
spherical, and the pores’ positions and sizes are distributed randomly
over space. Additionally, pores frequently combine and overlap. All
these observations result from the foaming process where randomly
placed gas cavities emerge during firing due to additives randomly
distributed over the raw material. Therefore, we can safely assume a
pore sphericity of 1 and use the method described in [19] to obtain
all further metrics of the porous structure required to replicate the
4 
geometry. This method was initially intended to represent complicated
shapes by assemblies of spheres. Still, it can easily be modified to fit
spheres to the void space of a porous structure and, therefore, obtain
the position and size of the spherical pores. Fig. 8 shows the result of
this procedure. From the size and the positions of the detected pores,
we can directly obtain the pore size distribution, the overlap between
neighboring pores, and the porosity. Alternatively, the porosity can
be obtained by binarizing the 3D-CT data and computing the void
ratio. Fig. 9 shows the measured pore size distribution and the average
overlap between pores as a function of the pore diameter. The porosity
is approximately 60%. Remarkably, the pore sizes follow a gaussian
distribution.

Using the obtained characteristics of the ceramic foam, we now
apply the method described in Section 2 to create an artificial porous
structure with the same statistical properties as the natural material.
While we can precisely replicate the pore size distribution, the porosity
and overlap between pores can only be replicated within a tolerance
of ±3% and ±5%, respectively. A qualitative comparison between
the natural material and the replication can be seen in Fig. 10. The
geometries consist of more than 100.000 individual pores and represent
a cubic cutout of the ceramic foam with a side length of 200 μm.

To further validate our method for reproducing porous geome-
tries, we conduct heat transfer experiments on a sample material and
compare the results with heat transfer simulations of the replicated
geometry.

In the experiment, we measure a ceramic foam panel with the
dimensions 200 × 200 × 20 mm. To obtain the heat conductivity, the
sample is clamped between two plates. One of the plates is kept at
a temperature of 15 °C, and the other at 5 °C. By measuring the heat
flux for the given temperature gradient, the heat conductivity can be
obtained directly from the Fourier law:

𝜆 = �̇�
𝐴

𝑑
𝑇hot − 𝑇cold

(1)

where �̇� is the heat output of the hot plate, 𝐴 is the surface area of
the plate, 𝑑 is the thickness of the sample, and 𝑇hot and 𝑇cold are the
temperature of the hot and the cold plate respectively. The sides of the
sample are thermally insulated such that there is no heat flux directed
parallel to the surface of the hot and cold plate. From this measurement,
we obtain the thermal conductivity 56.9mWm−1 K−1.
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Fig. 7. Microscopy image of a porous ceramic (left) and CT image data obtained from the same sample.
Fig. 8. 𝜇-CT-data (left), pores detected according to the method described in [19] (right), and overlay of both (center).
Fig. 9. Pore volume per diameter as a function of the pore diameter.

Four heat conduction mechanisms contribute to the measured over-
all heat transfer: Heat conduction through the solid matrix, heat con-
duction through the enclosed fluid, convective heat transport, and heat
transfer by radiation. In principle, all four mechanisms must, therefore,
also be modeled in a corresponding simulation. However, for small
pores, viscous effects dominate and inhibit natural convection. There
is an ongoing debate on the critical pore size above which natural
convection is significant. In [20], it was shown that convection does not
occur in porous media if the Rayleigh number is smaller than 75. Later
studies suggested that the contribution of convection to the effective
thermal conductivity is negligible for pore sizes below 4mm [20–25].
5 
Others determined the critical pores size to 3mm [26] or 5mm [27].
A nice overview is given in [28]. As we can see from the measured
pore size distribution in Fig. 9, the pore sizes of the ceramic foam are
below ≈ 400 μm and, thus, definitely far below all critical pore sizes
suggested so far. Therefore, we can safely neglect the contribution of
convective transport to the effective thermal conductivity of the studied
ceramic foam. Hence, in our simulations, we only need to consider heat
conduction through the solid and the gas and heat radiation. The heat
conduction simulations are done with an in-house implementation of
the Smoothed Particle Hydrodynamics method (SPH), see e.g. [29].
SPH is a mesh-free Lagrangian method originally introduced for treat-
ing astrophysical phenomena and gas dynamics [30,31]. The mesh-free
approach has proven to be advantageous for geometrically complicated
boundary conditions, as is the case with porous foam structures. The
heat radiation is modeled by ray tracing. Each surface element emits
thermal energy according to the Stefan–Boltzmann law

𝑃 = 𝜀(𝑇 )𝜎𝐴𝑇 4 (2)

where 𝑃 is the radiation power, 𝜀 is the emissivity of the material,
𝐴 the area of the surface element and 𝑇 its temperature. We chose
the emissivity of brick, 𝜀 = 0.9 [32]. We then assume that the heat
energy is radiated along a straight line. When this heat ray hits another
surface element, it is absorbed, and its heat energy is transferred to the
respective surface element. The reflectivity of the ceramic foam is neg-
ligible. For the thermal conductivity of the interstitial air, we use the
literature value of 26.2mWm−1 K−1 [33]. For the solid matrix, we use
the heat conductivity of the unfoamed raw material 395.2mWm−1 K−1

as obtained from the experiment. The simulation setup is depicted in
Fig. 11. Analogous to the experimental setup, the simulation features
a cold plate (left) and a hot plate (right) with the same temperatures
as in the experiment. Different from the experiment, we simulate 10
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Fig. 10. Geometry of a ceramic foam obtained by 𝜇-CT (left). Replication of the geometric properties using the method described in Section 2 (right).
Fig. 11. Setup for the heat transfer simulations. The sample is clamped between a
hot and cold plate (left and right). At all other faces, we specify Neumann boundary
conditions so that no heat transfer occurs. This corresponds to a perfectly isolated
system.

cubical samples of the dimension 20 × 20 × 20 mm and find an
effective thermal conductivity of 56.0 ± 0.1mWm−1 K−1. The discrep-
ancy to the experimental reference value is approximately 1.5%. This
consistency showcases the geometric fidelity of the presented method
for generating porous structures.

4. Application demonstration B: Optimization of a porous heat-
insulation material

In this Section, we demonstrate the variety of possible geometries
and show how the presented method for creating porous geometries
can be used to vary the produced geometries systematically. To do this,
we minimize the thermal conductivity of a fictitious porous thermal
insulation material by varying its geometry. We determine the resulting
thermal conductivity in each case by simulation as described in Sec-
tion 3. As shown in Fig. 12 and Fig. 13, we can use our method to vary
6 
Fig. 12. Effective heat conductivity of the foam structure as a function of the porosity.
Blue line: heat transport through the solid matrix, interstitial gas, and radiation. Orange
line: no radiative transport. The dashed gray lines indicate the air’s heat conductivity
and the solid matrix’s unfoamed raw material. The inset shows the porous geometry
for a porosity of 30%, 50% and 85%. (For interpretation of the references to color in
this figure legend, the reader is referred to the web version of this article.)

Fig. 13. Effective heat conductivity of the foam structure as a function of the average
pore size (for further description see caption of Fig. 12). The inset shows the porous
geometry for an average pore size of 45 μm, 75 μm and 105 μm. (For interpretation of
the references to color in this figure legend, the reader is referred to the web version
of this article.)
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Fig. 14. Effective heat conductivity of the foam structure as a function of the pore
expansion factor (see text). For further description of the figure, see the caption of
Fig. 12. The inset shows the porous geometry for a pore expansion of 100% (closed
porous system), 200%, and 300%. (For interpretation of the references to color in this
figure legend, the reader is referred to the web version of this article.)

the porosity of the geometry for a given pore size distribution or to vary
the average pore size of a porous structure at constant porosity. From
numerical simulations described in Section 3, we obtain that the heat
conductivity decreases almost linearly with increasing porosity. This
is to be expected because a higher porosity increases the proportion
of air in the material, which in turn has a lower thermal conductivity
than the material from which the solid matrix is made. By scaling up
the entire porous geometry and cropping the result to the dimensions
of the original sample, we can increase the pore size while keeping the
porosity constant. Some sample geometries are depicted in the inset of
Fig. 13. The resulting heat conductivity decreases with increasing pore
size. This is because larger pores prevent or lengthen thermal bridges
from the warm to the cold side of the sample more than small pores.
However, this is only valid as long as the pore size stays below the
threshold at which convection influences the effective heat conductivity
of the system (see discussion in Section 3).

In practical applications, both characteristics, the pore size distribu-
tion, and the insulator’s porosity, are frequently predetermined by the
manufacturing process and requirements for the mechanical stability of
the resulting material. In the following, we, therefore, limit ourselves
to the pore size distribution shown in Fig. 9 and porosity of 75%.
Possible degrees of freedom that remain for the optimization of the
material include the shape of the individual pores, the orientation of
the pores in the case of aspherical pores, or the transition from a
closed porous system to an open porous system. To vary from closed
to open porous structures at constant porosity, we create closed-cell
systems whose porosity is below the target porosity and then enlarge
the pores by a given pore expansion factor. This allows us to increase
the porosity up to the target value, resulting in overlapping pores,
i.e., an open-cell structure. Fig. 14 shows three exemplary geometries
with different pore expansions and the dependence of the effective
thermal conductivity on the open cellularity. As we can see from
the numerical simulations, the pore overlap hardly influences thermal
conductivity. This is because although the pores now overlap, they still
do not form continuous channels longer than the critical length scale
above, for which convection significantly contributes to heat transport.

To investigate the influence of spherical pores at constant porosity,
we consider the initially spherical pores as ellipsoids, reducing one
of their semi-axes by a factor and increasing another by the same
factor. This way, we obtain elongated or flattened ellipsoidal pores with
unchanged volume. Due to the aspherical pores, the porous geometry
7 
Fig. 15. Effective heat conductivity of the foam structure as a function of the pore
asphericity. For further description of the figure, see the caption of Fig. 12. The
inset shows the porous geometry for a pore asphericity of 1.25, 1.5, and 2.0. (For
interpretation of the references to color in this figure legend, the reader is referred to
the web version of this article.)

Fig. 16. Effective heat conductivity of the foam structure as a function of the
orientation of elongated pores relative to the direction of heat transfer. For further
description of the figure, see the caption of Fig. 12. The inset shows the porous
geometry for relative orientations of 22.5°, 45° and 90°. The image at the top of the inset
shows a random orientation of the pores. The dashed orange and blue lines indicate the
sample’s thermal conductivity with random orientation of the pores. (For interpretation
of the references to color in this figure legend, the reader is referred to the web version
of this article.)

is no longer isotropic, and we have to determine in which direction we
investigate the heat transfer. First, we consider the case where all pores
elongate in the same direction. We vary the elongation and look at the
heat transport along the longest semi-axis of the ellipsoids. The result
is shown in Fig. 15. We can see that the effective heat conductivity
increases linearly with the asphericity. This is due to the increasingly
layered structure where more and more continuous webs form from
cold to warm, creating thermal bridges.

We now vary the difference between the direction of the elongated
pores and the heat flow direction for an asphericity of 1.5. The more
the webs of the layered structure are oriented perpendicular to the
direction of the heat flow, the lower the thermal conductivity is,
as this avoids thermal bridges. Additionally, we simulated the heat
conductivity for a sample with random orientation of the individual
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pores, as shown in the top row of the inset in Fig. 16. This results in an
approximate averaging of the thermal conductivities measured for the
individual orientations.

From these parameter studies, we can conclude that one way to
minimize the thermal conductivity of the porous foam structure at a
given porosity and pore size distribution is to flatten the pores and
orient the short half-axis of the thus aspherical pores perpendicular to
the direction of heat flow.

5. Summary

We have introduced a method that allows for the generation of
diverse porous geometries. The technique allows for specifying essential
parameters such as porosity, pore shape and orientation, and pore
size distribution. In contrast to previously published methods, the
parameters can be systematically varied, and highly porous, highly
irregular structures with arbitrarily large pore overlap can also be
generated. The method is thus suitable for replicating existing natural
porous materials and, on the other hand, for conducting parameter
studies with fictitious porous structures, as required for the numerical
optimization and development of novel porous materials using com-
puter simulations. We validated the method by replicating a ceramic
foam structure and comparing the simulated thermal conductivity of
the resulting geometry with experimental results. By optimizing the
thermal conductivity of a fictitious porous thermal insulation material,
we have demonstrated the wide variety of representable geometries and
how these can be systematically varied.
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