
Proof Proposition
of the Syracuse Conjecture

by Rémy Aumeunier

The Syracuse conjecture, known as the Collatz problem, was introduced
by the German mathematician Lothar Collatz in 1937. It is the unproven
mathematical statement that, starting from any integer n > 0, the sequence
Un arrives at the value 1, after following these rules :

U0 ∈ N∗ Un+1 =

{
Un
2

if Un is even

3Un + 1 if Un is odd

1 Preamble

This proposed method involves transforming the sequence Un into a polynomial
form. The analysis of the polynomialization of the Syracuse sequence offers an
unconventional approach to thoroughly examine the behavior of these sequences.
Through this perspective, I aim to provide insights that could contribute to
answering the conjecture or approaching this problem in an unexpected way.

2 Polynomialization of the Syracuse Sequence

To perform the polynomialization of the elements of the Syracuse sequence,
I use a variant of the Horner method known as Ruffini-Horner. This method
associates a value with a polynomial representation.

U0 ∈ N∗ Un+1 =

{
Un

2 if Un is even

3Un + 1 if Un is odd

{qx, px} ∈ N u0
3p

2q0
+

3p−1

2q1
+

3p−2

2q2
+

3p−3

2q3
+

3p−4

2q4
+ · · ·+ 3p0

2qn
= un

And if I consider the compressed Syracuse sequence

U0 ∈ N∗ Un+1 =

{
Un

2 if Un is even
3Un+1

2 if Un is odd
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After arrangement, I obtain a form that I will qualify as canonical. Since a
multiplication by 3 necessarily involves a division by 2.

u0·
(
3

2

)p

· 1

2q0
+

(
3

2

)p−1

· 1

2q1
+

(
3

2

)p−2

· 1

2q2
+

(
3

2

)p−3

· 1

2q3
+...+

(
3

2

)p−n

· 1

2qp
= un

Thus, each value of the sequence can be associated with a distinct transposition.
This transposition follows a common structure systematically imposed by the
Syracuse method. Here, p denotes the number of multiplications by 3, while the
highest power of 2 reflects the number of divisions by 2 performed.

2.1 Numerical Application

The polynomialization of the Syracuse sequence is a simple transposition of
values

U0 ∈ N∗ Un+1 =

{
Un

2 si Un est un entier pair

3Un + 1 si Un est un entier impair

U15 = {46, 23, 70, 35, 106, 53, 160, 80, 40, 20, 10, 5, 16, 8, 4, 2, 1}

I write all intermediate values as fractions.

((((
15·3+1

2

)
·3+1

2

)
·3+1

2

)
·3+1

2·2·2·2·2

)
·3 + 1

2 · 2 · 2 · 2

Which I then rearrange as a pseudo-polynomial.(
...

)
+

1

24(
...

)
+

3

29
+

1

24(
...

)
+

32

210
+

3

29
+

1

24

· · ·

15
35

212
+

34

212
+
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211
+

32
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+

31

29
+

30

24
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3 Proof Proposal

In this proof proposal, I will consider the intermediate values from their
representation as a pseudo-polynomial. Then, I will study the behavior of q.

u0 ·
(
3

2

)p

· 1

2q0
+

(
3

2

)p−1

· 1

2q1
+

(
3

2

)p−2

· 1

2q2
+ ...+

(
3

2

)p−n

· 1

2qp
= un

un represents the nth value of the Syracuse sequence, with u0 being the first
element of the sequence. The variable p counts the odd values encountered
during the iterations, while q0 corresponds to the number of supernumerary
divisions by 2 related to the even integers of the form (2p>1n). It is precisely
the evolution of q0, which increases monotonically because q0 and the sum of the
supernumerary divisions by 2, that demonstrates the inevitable convergence of
the sequence to 1. Indeed, the limit of q0 allows us to establish an order relation.
And having u0 · 3p

2p+q0
≈ 0 makes the sequence converge to 1.

⌊u0 · 3p

2p+q0
⌋+ ⌊3

p−1 + · · ·+ 3p0 · 2bn
2p+q0

⌋+ (u0 · 3p + 3p−1 + . . . 2bn)mod(2p+q0)

0 + 0 +
u0 · 3p + 3p−1 + · · ·+ 3p0 · 2bn

2p+q0
=

2p+q0

2p+q0
= 1

3.1 Numerical Application :

With the divisions I have classified as extra in bold.

un = {23−70−35−106−53−160−80 - 40 - 20 - 10−5−16−8 - 4 - 2−1}

23 · 3 + 1

2
= 35

34.5 + 0.5 = 35
3

2
= 1.5

23 · 32

22
+

3

22
+

1

2
= 53

51.75 + 0.75 + 0.5 = 53

(
3

2

)2

= 2.25

(
23 · 33

23
+

32

23
+

3

22
+

1

2

)
÷ 24 = 5

23 · 33

23
· 1

24
+

32

23
· 1

24
+

3

22
· 1

24
+

1

2
· 1

24
= 5(

3

2

)3

· 1

24
= 0.2109375

4.8515625 + 0.0703125 + 0.046875 + 0.03125 = 5
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(
23 · 34

24
· 1

24
+

33

23
· 1

25
+

32

22
· 1

25
+

3

2
· 1

25
+

1

2

)
÷ 23 = 1(

23 · 34

24
· 1

27
+

33

23
· 1

28
+

32

22
· 1

28
+

3

2
· 1

28
+

1

24

)
= 1

(
3

2

)4

· 1

27
= 0.03955078125

0.90966796875 + 0.01318359375 + 0.0087890625 + 0.068359375 = 1

Here, the coefficient 1
2q0 = 1

27 because there are 7 extra divisions, which are
associated with the values 80 - 40 - 20 - 10 - 8 - 4 - 2.

3.2 Frequency (2n>1 · n)
In the academic corpus, there are numerous proofs establishing the impossibility

of an infinite alternation of even and odd integers. What follows is not an
academic proof, but it serves to justify the presence of integers of the form
(2p>1n). For this, I consider the Syracuse sequence associated with the integer
31.

{31, 94, 47, 142, 71, 214, 107, 322, 161, 484, 242, 121}

Then, the compressed form of Syracuse and the even integers, and I calculate
the multiplier coefficient.

{94 = 2 · 47, 142 = 2 · 71, 214 = 2 · 101, 322 = 2 · 7 · 23, 484 = 22 · 11, ...}

142/94 = 1.5106... , 214/142 = 1.5070... , 322/214 = 1.5045...

This coefficient, not being an integer, does not allow for the reuse of the large
prime numbers present in the factorization of the elements of the Syracuse
sequence. This implies that the powers appear very quickly on small prime
numbers. And if I consider a pair (odd/even), these two integers are coprime
”(nx ·3+1)”, making the integers of the form (2p>1n) obligatory and frequent in
a relatively close neighborhood. Specifically, this amounts to trying to multiply
by ≈ 3 = 2 · (1.5 · · · ) without being able to use this prime number in its
decomposition, which imposes a fairly significant frequency of integers of the
form 2n>1 ·n in the sequence, which makes it converge, because u0 · 3p

2p+q0
≈ 0. · · ·

.

3.3 Unicity of the Cycle

In this proposed demonstration of the uniqueness of the cycle, I will consider
two occurrences of the same value

u0 · 3p + 3p−1 + · · ·+ 2bn

2p+q0
=

3na + 2bn

2p+q0
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um =
3na + 2a

2c
=

3nb + 2b

2d
= un

(3na + 2a) · 2d

2c2d
=

(3nb + 2b) · 2c

2c2d
, 2a < 2c < 2b < 2d

(3na + 2a) · 2d−c · 2c

2c2d
=

(3nb + 2b) · 2c

2c2d

un =
(3na + 2a) · 2d−c

2d
=

(3nb + 2b)

2d
̸= 1 ∈ N∗

The only possible integer values for un will be of the form 2n, which demonstrates
the uniqueness of the cycle {4, 2, 1, 3, 4, 2, 1, . . .}

3.4 Generalization by Substitution

If desired, we can generalize the calculation of the sequence here, replacing
3 with 5.

U0 ∈ R∗ Un+1 =

{
Un

2 si Un est un entier pair

5Un + 1 si Un est un entier impair

For 3x+ 1, I have :
3n

2(n+
2n
3 )

< 1

Whereas, for the 5x+ 1 case, I have :

5n

2(2n+
n
3 )

< 1

This implies that only 2/3 of the divisions by 2 are needed in addition to those
related to the canonical form, whereas for the sequence 5x+1, more than twice
as many are required. This causes the sequence to diverge, except for a few rare
or very specific cases, if they exist.

3.5 Recurrence

This approach also allows reasoning by recurrence. If I consider a large
integer u0, each time the integer division part in the calculation of un equals
zero, I can start over from this integer (which is different from 1) and no longer
consider the old transposition, to build a new sequence, and so on until the
sequence equals 1.

0 + nx · 2
q0

2q0
= u′

0

u′
0

3p

2q0
+

3p−1

2q0
+

3p−2

2q1
+

3p−3

2q2
+

3p−4

2q3
+ · · ·+ 3p0

2qn
= 1

”
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4 Acknowledgement

This proof proposition wouldn’t have been as straightforward and therefore
hardly contestable without ChatGPT ; this AI enabled me to explore some dead
ends and approach problems in a way that excludes unnecessary complexities.This
was achieved despite its occasional quirks, to remain polite.”
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