
Narractive
a domain specific language prototype for textual worlds

Abstract:
Mainstream programming languages are poorly equipped to quickly install a
virtual world and directly play with its inhabitants, tools and components. The
Narractive language mixes ideas from knowledge representation and theorem
proving to offer a lower-barrier entry to simulation in textual virtual worlds.

Keywords:
knownledge representation, conceptual graphs, simulation, virtual worlds,
interactive fictions, textual adventures, puzzles.

1. Square boxes

Narractive has no predefined notion such as room, north, south, take. Instead
everything is minimalist and built from scratch. The most basic component is
the square box. Constant square boxes are [integer=2], [float=3.1415],
[string="hello"]. A variable square box is [person] where person is said
to be a concept. The variable square box [person] means there exists a
person and this person may be different than any other [person]. If you want
to refer to the specific person alice then the square box is [person:alice]
where alice is said to be the referent. A referent name must be unique in the
whole world.

New concepts are introduced starting from the upper-most concept via derive…
as… .

derive concept as person, city, vehicule, sell.
derive person as child, woman, man, sailor.

Taken together the derive…as… commands create a concept hierarchy.
Using this example hierarchy [woman:alice] is compatible with [person] and
[person:alice] because any woman is also a person. Note that
[concept:alice] holds too because person is a concept. On the contrary
[sailor:alice] fails because not every woman is a sailor.

2. Role arrows, trees, commands

The other component than square boxes is the role arrow.
A role arrow connects a left square box to a right square box like
[person:alice]-location->[city:lyon]. Square boxes and role arrows
together form a tree. Trees together form a forest that is the textual virtual
world.

New trees are created using the insert command.

insert
 [woman:alice]-
 -location->[city:lyon],
 -has->[vehicle:car]-quantity->[integer=2],
 -money->[float=5000.0]
 [man:bob]-
 -location->[city:marseille],
 -has->[vehicle:car]-quantity->[integer=1],
 -has->[vehicle:bike]-quantity->[integer=1],
 -money->[float=13000.0].

New commands are created using define…rewrite…as… where every word
begining with an uppercase letter is a pattern variable within the define section
and a bound variable within the as sections. In the rewrite sections there are
both old bound variables (bound within the define section) and new pattern
variables.

define [sell]-
 -agent->[person:A],
 -participant->[person:B],
 -theme->T,
 -price->[float=P].
rewrite [person:A]-
 -has->T-quantity->[integer=N],
 -money->[float=M]
as [person:A]-
 -has->T-quantity->[integer=N-1],
 -money->[float=M+P]
rewrite [person:B]-
 -has->T-quantity->[integer=N],
 -money->[float=M]
as [person:B]-
 -has->T-quantity->[integer=N+1],
 -money->[float=M-P].

define [travel]-
 -agent->[person:P],
 -instrument->[vehicle:V],
 -start->[city:A],
 -destination->[city:B]

rewrite [person:P]-location->[city:A]
as [person:P]-location→[city:B].

Defined commands can be invoked using the command keyword.

command
 [travel]-
 -agent->[woman:alice],
 -instrument->[vehicle:car],
 -start->[city:lyon],
 -destination->[city:marseille]
 [sell]-
 -agent->[woman:alice],
 -participant->[man:bob],
 -theme->[vehicle:car],
 -price->[float=12000.]
 [sell]-
 -agent->[man:bob],
 -participant->[woman:alice],
 -theme->[vehicle:bike],
 -price->[float=4000.]
 [travel]-
 -agent->[woman:alice],
 -instrument->[vehicle:bike],
 -start->[city:marseille],
 -destination→[city:lyon].

3. Deep trees

The semicolon allows to deepen trees at arbitrary levels.

insert
 [woman:alice]-
 -son->[child:charlie]->
 -location->[city:lyon],
 -friend->[child:dylan]->
 -location->[city:lyon],
 -has->[vehicle:roller_skate]-quantity->[integer=1],
 -money->[float=100.0];
 -has->[vehicle:bicycle]-quantity->[integer=1],
 -money->[float=300.0];
 -location->[city:lyon],
 -has->[vehicle:car]-quantity->[integer=2],
 -money->[float=5000.0].

4. Nested trees

Another (and last) kind of square box is proposition. A proposition is a square

box [concept=…] where … can be a full-featured tree. Propositions allow
complex rules such as Tom believes that Eva wants to marry a sailor.

derive concept as proposition, situation.

insert
 [man:tom]-believe->
 [proposition =
 [woman:eva]-want->[situation =
 [woman:eva]-marry->[sailor]
]
].

5. More commands and patterns

The show command displays the whole world or a chosen tree or sub-tree.
The select command displays all sub-trees satifying the given pattern.

select [woman]-son->[child]-R->T.

Here R is a role pattern variable and T is a tree pattern variable (it will capture
the whole tree at right of R).

6. Inversed role arrows

Any role arrow can be right-to-left instead of left-to-right.
Said otherwise you have 2 different ways to tell that alice and charlie are
mother and son.

insert
 [woman:alice]-son->[child:charlie]
 [woman:alice]<-mother-[child:charlie].

insert
 [child:charlie]-mother->[woman:alice]
 [child:charlie]<-son-[woman:alice].

7. Interactive fiction specifics

I am not deep into this stuff at the moment because i want to keep Narractive as
general-purpose as possible.

insert, define and rewrite may be too powerful to be allowed by an

interactive fiction player, so you can turn them off.

insert define rewrite off.

Of course if your main character is (or becomes) an all-mighty wizard or a
super-quantum-conscious-computer you can eventually turn them on:

insert define rewrite on.

How the interactive fiction back-story is told is not yet written in stone.
Chances are that a display command and a prompt command will do the basic
job.

display "This is the fantasy back-story.".
prompt "WIZARD> ".

8. Related work

Dialog is a domain specific language for Interactive Fiction authoring. Dialog
has a bunch of features to tightly control the text display. Dialog offers a
Prolog-like rule matching engine but is not equipped to handle natural-look-
alike language. Despite this limitation Dialog is good enough for typical IF
authoring because almost no author claim for advanced text processing.
Prolog+CG features a Prolog plus Conceptual Graphs. Thus one would imagine
Prolog+CG is the ideal Interactive Fiction creator. Unfortunately Prolog+CG
lacks support. Trying to contact the maintainer via email or forum is a waste of
time.

https://linusakesson.net/dialog/index.php
http://prologpluscg.sourceforge.net/contact.html
http://prologpluscg.sourceforge.net/

